“如果想把原子钟装在卫星上,利用时间进行导航,就必须使用两个原子钟,铯原子钟的长期稳定性较好,可以几天甚至十几天不对误差进行修正。铷原子钟在短时间内的精度要好于铯原子钟,但是时间稍长就要对误差进行修正。所以,只有通过两者互相配合,才能满足精度要求……”
在物理试验室内,李政道的话声刚落,一旁就有人说道。
“还有氢原子钟可以利用,它则具备这两者共同的优点,”
看着提出建议的学生,李政道说道:
“你说的是没错,氢原子钟是具备两者的优点,但是它设计相对复杂,应用难度比较高而已,我们可以此作为研究方向,但就是目前来说,铯原子钟和铷原子钟的才是最好的选择。”
三年前,在前往斯的哥尔摩的飞机上,他与阁下有过一番深入的交流,在飞机上阁下提出了卫星导航的概念,并且鼓励他进行这方面的研究,也就是从那天起,他就一直专注于原子钟以及卫星导航的研究。
从一开始与英国合作研究铯原子钟,再到自主研发铷原子钟,在过去的三年之中,他和助手以及所带的学生们一同努力着,一点点的将阁下的构想变成现实。
尽管从一个理论物理学家转向应用物理学研究碰到了不少问题,但是他最终还是克服了其中的难题。将英国人设计的体积非常大,相当于一个房间大小的原子钟,一点点的缩小到几百公斤,体积相当于一个180升的冰箱大小。
而相比于体积庞大的铯原子钟,铷原子钟是所有原子钟中最简便、最紧凑的一种。这种时钟使用一玻璃室的铷气,当周围的微波频率刚好合适时,就会按光学铷频率改变其光吸收率
也正因为其卓越的性能,让李政道选择它作为突破口。
“他们两者结合在一起,或许重量还稍微大了一点,但至少可以先解决有与无的问题,当然,最重要的是,我们要先验证这个导航的精度。”
内容未完,下一页继续阅读